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Colored-noise-induced multistability in nonequilibrium phase transitions
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P.O. Box 106, Yusong-gu, Taejon 305-600, Korea
~Received 11 September 1997; revised manuscript received 27 August 1998!

We investigate the colored-noise effect on nonequilibrium phase transitions. A simple model is studied
analytically in the presence of a dichotomous multiplicative noise. In the white-noise limit, the model shows a
nonequilibrium phase transition. With a finite correlation time of the noise, the system exhibits multistability of
ordered and disordered states and as the coupling strength increases, it also shows a reentrant transition into the
disordered phase. Numerical simulation results are presented confirming the existence of the multistability and
the reentrant transition.@S1063-651X~98!09512-9#

PACS number~s!: 05.40.1j, 05.70.Ln, 02.50.Ey, 64.60.Cn
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A noise-induced nonequilibrium phase transition in a d
namical system with multiplicative noise has been the to
of much recent investigation@1–10#. While an additive noise
in equilibrium provides a disordering effect, restoring a b
ken symmetry, the multiplicative noise coupled to the st
of the system induces an ordered symmetry-breaking s
The interplay of the additive and multiplicative noises pr
duces a reentrant transition, showing the ordered symme
breaking state only for intermediate intensities of the mu
plicative noise@4,10#. The fluctuating interaction has als
been studied, showing the symmetry-breaking transition@7#
and noise-enhanced multistability@9#. Multistability shown
in a time-delayed system has also been interpreted a
mechanism of perception of ambiguous or reversible figu
@11#. Most studies of the noise-induced phase transition h
usually considered the multiplicative noise as white. Sin
the multiplicative noise comes in general from the coupl
with an external source, the consideration of the tempo
correlation of the noise is realistic.

In this Brief Report we investigate the colored noise
fect on the nonequilibrium phase transition. We conside
simple model that shows the nonequilibrium phase transi
in the presence of white multiplicative noise. In the mode
reentrant transition is also shown, leading to an ordered s
only for intermediate intensities of the white multiplicativ
noise. To study the colored-noise effect we introduce a
chotomous multiplicative noise into the system instead of
white multiplicative noise. For the globally coupled syste
we obtain the self-consistent equation of the order param
analytically, assuming that there is no spatial correlati
With the finite correlation time of the dichotomous noise, w
show that the system exhibits multistability of the order
and disordered states and a reentrant transition into the
ordered state as the coupling strength increases. A nume
simulation is performed confirming the analytical results.

As in Ref. @4#, we consider a dynamical system who
state at timet is described by the set of stochastic variab
$xi(t) u i 51,...,N%. The time evolution of the system is gov
erned by the stochastic differential equation
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dxi

dt
5 f ~xi !1g~xi !h i1

D

zi
(

j Pn~ i !
~xj2xi !, ~1!

whereD is a coupling constant,n( i ) stands for the set ofzi
sites coupled withxi , andh i is the multiplicative noise. The
sum in Eq.~1! describes diffusive coupling, which depend
on the difference of twoxi ’s. The specific case considere
here and analyzed in Ref.@4# is

f ~x!52x~11x2!2, g~x!511x2,

which could be the simplest example exhibiting the noneq
librium phase transition. In this case Eq.~1! is invariant un-
der a symmetric operation

xi→2xi , h i→2h i for all i .

This symmetry is broken by the multiplicative noise.
To study the colored noise effect on the system, we c

siderh i as the Markovian dichotomous noise that consists
two levels$D2 ,D1%. This dichotomous noise is characte
ized by the transition ratesa(D2→D1) and a(D1→D2)
between two levels. Here we consider the case of symme
dichotomous noise given by

D152D2[D, a~D2→D1!5a~D1→D2![a.

Then the noisesh i have zero mean and the correlations

^h i~ t !h j~ t8!&5d i j

s2

2t
expF2

ut2t8u
t G ,

wheres[D/Aa measures the intensity of the dichotomo
noise andt[1/2a is the correlation time of the noise. In th
limit t→0, the dichotomous noiseh i(t) tends to the white
noise j i(t) with correlations^j i(t)j j (t8)&5s2d i j d(t2t8),
which is the case studied in Ref.@4#.

The composite system, comprising both the state varia
$xi% and the dichotomous noises$h i%, is described analyti-
cally by the joint probability distributionr($xi%,$h i%,t).
This joint probability distribution satisfies the couple
Fokker-Planck equations@12#
7994 © 1998 The American Physical Society
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]r~$xi%,$h i%,t !

]t
52(

j 51

N
]

]xj
F H f ~xj !1g~xj !h j

1
D

zj
(

kPn~ j !
~xk2xj !J r~$xi%,$h i%,t !G

2a(
j 51

N

@r~$xi%,$h i%,t !2r j~$xi%,$h i%,t !#

~2!

for all configurations of$h i%. In Eq. ~2!, r j ($xi%,$h i%,t) rep-
resents the joint probability distributionr($xi%,$h i8 %,t) with
h i852d i j h j1(12d i j )h i for all i. In the globally coupled
system, since the variables$xi% are statistically independen
@7#, we assume that there is no spatial correlation
r($xi%,$h i%,t) leading to

r~$xi%,$h i%,t !5)
i 51

N

r1~xi ,h i ,t !,

with the normalization condition

(
hP$D,2D%

E r1~x,h,t !dx51.

This assumption is confirmed by extensive numerical sim
lations. For a giveni, by the integrations overxj ’s and sum-
mations overh j ’s for all j Þ i , Eq. ~2! reduces to the Fokker
Planck equation forr1(x,h,t),

]r1~x,h,t !

]t
52

]

]x
@$ f ~x!1g~x!h1D~m2x!%r1~x,h,t !#

2a@r1~x,h,t !2r1~x,2h,t !#,

wherem is the order parameter given by

m5 (
hP$D,2D%

E x r1~x,h,t !dx. ~3!

The ordered symmetry-breaking state is characterized by
nonzero order parameterm.

The quantity that we are interested in is the probabi
distribution for the state variablex alone, i.e., P(x,t)
[r1(x,D,t)1r1(x,2D,t). Defining q(x,t)[r1(x,D,t)
2r1(x,2D,t), we obtain the evolutionary equations fo
P(x,t) andq(x,t) as

]P~x,t !

]t
52

]

]x
$@ f ~x!1D~m2x!#P~x,t !

1Dg~x!q~x,t !%,
~4!

]q~x,t !

]t
52

]

]x
$@ f ~x!1D~m2x!#q~x,t !

1Dg~x!P~x,t !%22aq~x,t !.

In the stationary state, we solve Eq.~4! with the boundary
condition that there is no probability current at bounda
leading to the stationary probability distribution
n

-

he

,

P~x!5N0U 1

F1~x!
2

1

F2~x!
U

3expF2aExS 1

F1~x8!
1

1

F2~x8! Ddx8G , ~5!

with

F6~x!5 f ~x!6Dg~x!1D~m2x!.

In Eq. ~5!, N0 is determined by the normalization conditio
*P(x)dx51. P(x) in Eq. ~5! has two singular pointsx6 ,
which are roots ofF6(x), respectively. Since the singula
points x6 are stable fixed points of the deterministic equ
tions dx/dt5F6(x), respectively,P(x) is normalizable re-
stricting x in (x2 ,x1) @12#. Equation~3! with Eq. ~5! pre-
sents the self-consistent equation of the order parameterm as

m5G~m![E x P~x!dx. ~6!

In Fig. 1 we show the order parameterm obtained from
the self-consistent equation~6! as a function ofs at D520
and t51. For smalls,sc1[5.0, m50, implying that the
system is in a disordered symmetric state. Ats5sc1 , m
50 becomes an unstable solution and a stable solution
pears, implying that the system is in an ordered symme
breaking state. Ass increases abovesc1 , the stable solution
increases continuously, leading to the second-order ph
transition ats5sc1 . At s5sc2[21.0, m50 becomes a
stable solution again and an unstable solution appears, l
ing to a subcritical bifurcation. Ass increases abovesc2 ,
the unstable solution increases. In this case, there are
stable solutions: One is zero and the other is nonzero. T
means that the system shows multistability of ordered
disordered states. Ats5sc3[36.7, the stable solution with
nonzerom and the unstable solution are annihilated, lead
to an inverse subcritical bifurcation. Thus, fors.sc3 , m

FIG. 1. Plot of the order parameterm as a function ofs at D
520 andt51. Solid and dashed lines are stable and unstable
lutions of the self-consistent equation~6!, respectively.L and h

represent the order parameterm obtained from the numerical simu
lations ass increases from zero and decreases from 50, resp
tively. sc1 , sc2 , andsc3 are transition points of the triple trans
tions, disordered state→ordered state→multistable state→disorder
state, respectively.
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50 is only a stable solution, implying that the system is
the disordered symmetric state again.

To confirm the analytical result we have performed a n
merical simulation with the stochastic equation~1! for the
system of sizeN5104. In the simulation we have used th
Euler method with discrete time steps ofDt51024. At each
run, the first 106 time steps have been discarded to achiev
steady state and 53106 time steps have been used to calc
late the order parameterm. Figure 1 showsm obtained by the
numerical simulation ass increases and decreases. The n
merical data coincide with the analytical stable solution v
well. Figure 2 shows the time evolutions ofm obtained by
the numerical simulation with different initial configuration
for the system atD520,t51, ands530. While one goes to
zero, the other approaches a finite value. This implies
the system is in the multistable phase of the ordered
disordered states.

Figure 3 shows a phase diagram in thes-t plane atD
520. At t50 there is no multistable phase. The order
phase exists only in the intermediate intensities ofs showing
the reentrant transition into the disordered phase ass in-
creases. Ast increases the multistable phase appears

FIG. 2. Plot of time evolutions of the order parameterm ob-
tained by the numerical simulation with different initial configur
tions for the system of sizeN5104 at D520, t51, ands530.

FIG. 3. Plot of phase diagram in thes-t plane atD520. DO,
O, and MS represent disordered, ordered, and multistable ph
respectively,sc1 , sc2 , and sc3 are transition lines of the triple
transitions, DO→O→MS→DO, respectively.
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expands. The ordered phase also expands. Figure 3
shows a reentrant transition exhibiting a disordered state
large values ofs. The critical pointssc1 , sc2 , andsc3 , at
which the triple transitions, disordered phase→ordered
phase→multistable phase→disordered phase, occur, respe
tively, increase monotonically ast increases. This produce
the reentrant transition into the disordered phase ast in-
creases at a fixed value ofs.sc3 (t50).

Figure 4 shows a phase diagram in thes-D plane att
51. For smallD,Dc[5.6, the system is in the disordere
state regardless of the values ofs. At D5Dc , the ordered
phase and the multistable phase appear at an interme
value ofs, s0[4.7. AsD increases the ordered and mul
stable phases expand. The critical pointssc1 , sc2 , andsc3
at which the triple transitions, disordered phase→ordered
phase→multistable phase→disordered phase, occur, respe
tively, increase monotonically asD increases. This produce
the reentrant transition into the disordered phase asD in-
creases at a fixed value ofs.s0 .

es,

FIG. 4. Plot of the phase diagram in thes-D plane at
t51. DO, O, and MS represent disordered, ordered, and m
stable phases, respectively.sc1 , sc2 , andsc3 are transition lines of
the triple transitions, DO→O→MS→DO, respectively.

FIG. 5. Plot of the order parameterm as a function ofD at t
51 ands510. Solid and dashed lines are stable and unstable
lutions of the self-consistent equation~6!, respectively.L repre-
sents the order parameterm obtained from the numerical simulatio
for the system of sizeN5104. sc3 , sc2 , andsc1 are transition
points of the triple transitions, disordered state→multistable
state→ordered state→disordered state, respectively.
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Figure 5 shows the order parameterm as a function ofD
at t51 and s510. There are three transition points,sc3
58.17,sc259.10, andsc1595.0, at which the triple transi
tions, disordered phase→multistable phase→ordered
phase→disordered phase, occur, respectively. In Fig. 5 o
can see that the large strength of coupling induces disord
the system. Since the coupling-induced disorder does no
ist in the system with white noise, it is a pure colored-no
effect. Numerical simulation confirms the analytical resul

In conclusion, we investigated the colored-noise effect
the nonequilibrium phase transition, considering a sim
model under a dichotomous multiplicative noise. We o
tained a self-consistent equation of the order parameter
lytically. In the white-noise limit, the system shows a no
equilibrium phase transition presenting the ordered phas
the intermediate intensities of the noise. In the presence
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finite correlation time of the noise, the system has the m
tistable phase of the ordered and disordered states in a
tion to the ordered and disordered phases. The trans
points of the triple transitions, disordered phase→ordered
phase→multistable phase→disordered phase, increase as t
correlation time and the coupling strength increase. This p
duces the reentrant transitions into the disordered phas
the correlation time and the coupling strength increase.
color-induced disorder and coupling-induced disorder
pure colored-noise effects because of the absence in
white-noise limit. We also performed numerical simulatio
confirming the analytical results.
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